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SUMMARY  

This term paper is a short review of the capabilities and history of epigenetic aging 
clocks, focusing on possible uses in both nonhuman and human longevity research. I will 
begin by covering the conceptual background required for understanding the function and 
purpose of DNA methylation-based aging clocks, first reviewing various prior methods of 
measuring aging before defining epigenetic age and explaining the basic principles behind 
epigenetic aging clocks. Then, I will cover the history of epigenetic aging clocks and their 
transition from chronological age indicators into mortality predictors, before focusing on 
their current uses in both human and nonhuman animals. I will conclude the paper with 
an analysis of underutilized opportunities for the use of these clocks in biodemography 
and chronic disease screening.   
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INTRODUCTION 

Over the last several decades, the field of epigenetics has moved from a relatively 
niche study of gene expression to the forefront of aging research. Epigenetic aging clocks 
have been critical in demarcating the difference between chronological and biological age, 
and in enabling a more direct study of the latter. These clocks work by observing the DNA 
methylation (DNAm) patterns across a variety of CpG sites (sites where a cytosine is 
followed by a guanine on the genome, where methylation can take place) of interest which 
are strongly correlated with aging and aggregating this data to predict either the 
chronological or biological age of an individual, depending on the clock design. Both the 
number of CpG sites surveyed and the accuracy of the predictions of the DNAm clocks 
have increased over time, and they have already been used as indicators for both the 
mortality risk of an individual and the success of anti-aging interventions (Fahy et al., 
2019). The potential DNAm clocks have to be used as biodemographic aides and as 
screening tools in humans, however, has thus far been mostly neglected. More epigenetic 
aging clocks should be devised for model organisms in the near future, and the 
implementation of epigenetic assays as screening tools for age-related diseases should be 
more widely considered.  

BACKGROUND 

Measuring Aging 

The age of humans has traditionally been measured simply by counting the 
number of years a person has been alive since birth, also known as their chronological age. 
There is no doubt that chronological age is intrinsically tied to the rate of actuarial aging, 
which can be modeled impressively well by the Gompertz model, designed in 1815. The 
Gompertz model suggests that the risk of death in humans increases by approximately 8% 
each year after 30 until around 80 years old, and this theory matches observed 
demographic data well. (Gompertz, 1815) However, individual humans vary greatly in 
their level of frailty and risk of death, which causes most of the observed difference in 
human actuarial aging. (Hawkes et al., 2012) Thus, while chronological age is a good 
predictor of the biological age of an organism, it is not ideal for predicting individual 
outcomes.  

Additionally, the simple passage of time is not enough to explain the aging 
process, as individuals exposed to stressors like famine, droughts, war, and poverty, or 
environmental toxins often display phenotypical signs of aging earlier, as do people 
suffering from alcohol (Leber, 1982) or tobacco (Morita, 2007) addictions. The Gompertz 
model is thus of course outperformed in predicting the risk of death of any given individual 
by models that take environmental and historical data into account (Jylhävä et al., 2017). 
Even still, gathering data about individual risk exposures is at best difficult and time-
consuming, and often impossible in many locations. Thus, it is necessary to discover 
effective biomarkers of aging, which can easily and replicably be observed without 
harming subjects.  Most molecular biomarkers of aging that reflect environmental risk 
factors do not meet these criteria. However, because gene expression in humans is 
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significantly altered by the environment, novel methods of measuring aging that study the 
epigenome, which is the sum of nonstructural changes to the genome that adjust gene 
expression in cell lines and their descendants (Bernstein et al., 2007) have been devised. 
The most relevant epigenetic alteration for measuring biological age is direct methylation 
of DNA, as other regulatory factors like acetylation of histones are much more transient in 
nature, with most failing to persist through the DNA replication process (de la Parte, C, 
& Guallar, D., 2023).  

Methylation and CpG Sites 

DNA methylation is chemically trivial in animals: at each CpG dinucleotide, 
which is simply a cytosine nucleotide followed by a guanine nucleotide (Li et al., 2022), a 
methyl group may be added to the genome by one of many proteins. The process of 
methylation is common to essentially all life, and it is one of many epigenetic methods that 
allow organisms to regulate the transcription of genes without altering their genetic code 
(Bernstein et al., 2007).   Methylation at CpG sites in the genome force that part of DNA 
to coil more tightly around its histone, which makes it difficult for proteins to access it. 
This is likely why CpG sites are so common in the promoter region of genes: they allow 
for easy regulation of the transcription of a gene simply by preventing RNA transcriptases 
from ever being able to form a complex and begin transcription. DNA methylation is also 
heritable across instances of mitosis (Bernstein et al., 2007), which means that all daughter 
cells of a given cell will carry nearly the same epigenome as their progenitor. It is also 
somewhat heritable from mother to daughter across meiosis, though much of the 
epigenome is reset during that process.  Not all CpG sites are correlated with aging or 
environmental stressors, but the methylation status of some CpG sites is highly correlated 
with increased age. Thus, identifying a large number of sites correlated with age and 
assaying their methylation status can provide a good estimate of the age of an individual, 
both chronologically and biologically. This is the main objective of DNAm aging clocks.  

History 

The history of epigenetic aging clocks begins in 2011 with the creation of the first 
epigenetic predictor of age (Bocklandt et al., 2011). Bocklandt and colleagues analyzed 
thousands of CpG sites in twins ranging from 18 to 70 years of age, looking for locations 
where methylation status was heavily correlated with chronological age. While the 
Bocklandt predictor made no attempt to estimate biological age, it was able to estimate 
chronological age with an average accuracy of 5.2 years simply by observing the 
methylation patterns across three CpG sites. Horvath was the first to create an epigenetic 
aging clock with the express goal of designing a multi-tissue predictor of age, which 
tracked 353 clock CpG sites (Horvath, 2013) with an average accuracy of 3.6 years, as 
shown in Figure 1. The clock was capable of predicting the age of chimpanzees with some 
accuracy, but it was less useful for other primates like gorillas.  



6 
 

In comparison, Porter et al.’s modern chronological DNAm clock, created in the 
same way as Horvath’s but with many more sites included (Porter et al., 2021), had an 

average accuracy of 3.7 years, which indicates that there are diminishing returns for 
including ever more CpG sites in DNAm clocks. Tissue-specific clocks like the blood-
based clock created by Zhang et al with a best-performing average error of 2.04 years 
(Zhang et al., 2019) can be better predictors of chronological age than pan-tissue clocks 
like the Horvath and Porter clocks, but they can be greatly skewed by tissue-specific 
diseases. This also raised the question: should epigenetic aging clocks still be attempting 
to predict chronological age as a proxy for biological age, or would they be more useful 
attempting to predict age-related phenomena like mortality rates or chronic disease 
incidence? 

CONTEMPORARY USES  

Mortality Predictors 

Epigenetic aging clocks diversified rapidly over the course of the 2010s, as several 
teams analyzed further CpG sites and began to devise new types of tissue-specific and 
pan-tissue DNAm clocks. One significant milestone in the development of epigenetic 
aging clocks was the observation that epigenetic age could act as a better predictor of all-
cause mortality than chronological age. (Chen et al., 2016) People that had a higher 
predicted “epigenetic age” based on the Horvath and Hannum clocks than their 
chronological age were much more likely to die sooner than their non-age-accelerated 
counterparts, with the 5% fastest epigenetic agers having a 48% higher risk of death.  After 
this milestone was reached, various competing clock teams began focusing on building 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Four DNAm chronological age predictors, arranged by average accuracy and 
number of CpG sites included in the clock. There are diminishing returns 
involved in including more CpG sites in a clock beyond a certain point.  
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better predictors of mortality. Chronological clocks, which simply attempted to estimate 
the time an individual has been alive, were deprioritized relative to biological clocks (Li et 
al. 2022), which, like their predecessors, have also begun to diversify. The first DNAm 
clock designed to track biological age over chronological age was dubbed DNAm 
PhenoAge (Levine et al., 2018), which was created in 2018 and was the first epigenetic 
aging clock specifically designed to incorporate healthspan. In 2021, the leading epigenetic 
clock for the prediction of mortality was the aptly named GrimAge clock (McCrory et al., 
2021). The GrimAge clock (Lu et al., 2019) fully moves away from predicting chronological 
age, instead consisting of a DNAm surrogate for smoking pack-years and 11 DNAm 
surrogates for blood plasma protein levels, as shown in Figure 2, much of which is taken 

directly from Lu et al.’s methods.  

The smoking pack-year indicator is still capable of predicting time-to-death in people who 
have never smoked, and is a better indicator for the lifespan of smokers than their self-
reported number of packs smoked. Additionally, GrimAge is strongly predictive of the 
onset of major mortality contributors like coronary heart disease and cancer. It is likely 
that still more accurate mortality predictors will be produced by folding more DNAm 
surrogates for other biomarkers of aging into a single model, but GrimAge is currently the 
clock of choice for studying longevity interventions and mortality. 

Trials and Interventions  

DNAm clocks have already seen some use in the field of longevity interventions in 
humans. Perhaps more importantly than their ability to act as an indicator of the success 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Methods used to create the DNAm GrimAge mortality predictor (Lu 
et al., 2019). 
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of aging interventions, DNAm clocks can also tell longevity researchers quickly if their 
interventions are unsuccessful, thereby preventing funds and time from being wasted on 
studies that would otherwise consume a great deal of time and money. However, there 
have been some notable successes in the field measured using epigenetic aging clocks. For 
example, the DNAm GrimAge clock was used to measure the success of a thymus 
regeneration protocol in 2019, which was the first recorded “increase, based on an 
epigenetic age estimator, in predicted human lifespan by means of a currently accessible 
aging intervention.” (Fahy et al., 2019). DNAm clocks can also be used in vitro to study the 
effects of reprogramming factors on human cells, which has been the method most capable 
of reversing epigenetic age in the laboratory (Gill et al., 2022). Gill et al. were able to 
achieve an estimated decrease in epigenetic age of 30 years in vitro without the loss of 
original cell identity through maturation phase transient reprogramming, which is highly 
significant, given the low mean error rates of DNAm clocks.    

NOVEL USES 

Environmental Analysis & Screening 

One of the biggest problems in human demography is the difficulty demographers 
have in estimating the frailty of individuals. Population frailty can be estimated by death 
rates over time, and environmental risks identified, but it is challenging to provide 
information rapidly enough to support the healthcare needs of an aging population. Thus, 
it would be useful for an already overburdened healthcare system to have the ability to 
recognize individuals that are vulnerable to or in the early stages of a chronic disease, 
making inexpensive preventative treatment a possibility. Longitudinal studies will be 
critical in devising predictors for chronic diseases. As Li and Koch discuss in their review, 

not all DNA methylation studies are cross-sectional (Li et al.,2022). The first longitudinal 
studies of the methylomes of single individuals or twins across several decades are now 
providing evidence for epigenetic predictors of the development of type 1 diabetes 

 

 

 

 

 

 

 

 

Figure 3:  Representing part of a potential screening target for type 1 diabetes, 
hypermethylation in the LHX6 gene was correlated with development of T1D 
later in life. (Johnson et al., 2020) 
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(Johnson et al., 2020). One of Johnson et al.’s figures is included above, indicating that 
hypermethylation of the LHX6 gene is linked to the development of type 1 diabetes, as are 
several other epigenetic changes.  Screening for these epigenetic changes in individuals 
who are already genetically prone to T1D, could eventually allow early intervention and 
treatment in order to prevent the cardiovascular damage that usually occurs with the 
disease (DiMeglio et al., 2018), or even enable study of its pathogenesis, which is still not 
well understood. As of right now, such research is currently ongoing in several labs (Crna, 
2019), (Zhang et al, 2021). Because DNAm aging clocks and mortality predictors are 
excellent predictors of many different chronic diseases, epigenetic screening could allow 
us to screen for many more diseases beyond type 1 diabetes. It could also allow us to begin 
screening for environmental pollutants at the same time as other diseases, saving a great 
deal of time and money, if we were able to discover sites whose methylation was correlated 
with exposure to such pollutants. 

Biodemography 

Unlike most methods of studying the biologically damaging effects of age in 
various organs, DNAm aging clocks do not require particularly intrusive tissue sampling 
(Jylhävä et al., 2017), and were thus more apt for immediate human study. This is likely 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Mayne et al.’s  clock design for zebrafish, shown above, involved only 29 CpG 
sites in its final version, but over 524,000 sites were included in the 10,000 
test clocks, creating the mean absolute error distribution shown. The most 
accurate clock, with MAE of 3.2 weeks, will likely be used in future studies. 
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responsible for the significant discrepancy in use between nonhuman epigenetic clocks 
and human clocks. Epigenetic aging clocks have been used in some model animals, like 
mice and chimpanzees (Horvath, 2013), but they have not yet been applied in many 
studies. It was 6 years after the first epigenetic clock’s creation that a similar clock was 
made for mice (Wagner, 2017), and three years later, in 2020, that the first clock was 
designed for zebrafish (Mayne et al., 2020). Zebrafish were an excellent choice for 
designing a clock, since their methylome is well understood and they are easy to breed in 
captivity. The amount of raw methylome CpG data required to produce these clocks for 
any species should not be understated, as shown in the provided figure. 

 

While DNAm clocks could not be used in yeasts, for example, since they only very 
infrequently regulate gene expression at CpG sites compared to mammals (Tang et al., 
2013), or in organisms whose methylome is only very infrequently sequenced, like lemon 
sharks (Beal et al., 2022), due to a lack of data volume required for clock construction, they 
are ideal for the study of long-lived vertebrates that are relatively easy to catch, like naked 
mole rats (Horvath et al., 2022). Horvath’s lab was able to create an epigenetic clock for 
the naked mole rat, a notoriously long-lived eusocial mammal, which showed significant 
differences in epigenetic age between queen and non-queen rats. This preliminary research 
may lead to further understanding of the epigenetic components of their extraordinary 
longevity. Beyond enabling less invasive and rapid study of vertebrates, DNAm clocks can 
also help solve a common problem faced in biodemography: the question of where to begin 
tracking the life of an organism. Conception and birth are common choices, as are the 
beginnings of adult life in animals with larval stages. Epigenetic aging clocks can provide 
a method of studying aging in early development post-conception, accurately predicting 
age “back to 8 weeks of gestational age, and likely to conception” (Hoshino et al, 2019).   

CONCLUSIONS  

In conclusion, DNAm-based aging clocks have rapidly moved from predicting 
chronological age to predicting biological age and risk of death over the course of the last 
decade, and they are an excellent tool for predicting both human mortality and the 
effectiveness of longevity interventions. However, they are significantly underutilized in 
nonhuman animals, with the possible exception of mice, which could be detrimental to 
our understanding of the underlying processes behind aging. Early studies of many 
important model vertebrates for biodemography via DNAm clocks have only started in the 
last three years, and so this space is likely to grow rapidly in the coming years. DNAm 
predictors could also be used to screen for the early onset of chronic diseases in humans 
and aid in the study of the etiology of these diseases, acting before traditional screening 
methods. 
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